
CHAPTER 3
QUANTUM FUZZY CIRCUITS
Arushi Raghuvanshi and Marek Perkowski

This chapter explores various new mechanisms for modeling and creating humanoid robot behaviors. We extend the binary quantum Braitenberg vehicles to fuzzy and  a new category of  Quantum-Fuzzy-Braitenberg vehicles. Applying and extending new logics to Braitenberg vehicles allowed the creation of methods to develop more complex and realistic behaviors.  Next, Quantum circuits to model Fuzzy logic, a new development, were used with genetic algorithms to evolve lip and text synchronization. The Quantum Fuzzy Model was then applied to demonstrate human emotions. Finally, the concept of Quantum circuits to model Fuzzy logic was defined and generalized.
3.1.  INTRODUCTION 
In this project, various research efforts and applications led to the development of Quantum circuits to model Fuzzy logic. Fig. 3.1 shows the evolution of the research work leading to the creation of a generalized Quantum Fuzzy model for humanoid robots behavior. The concepts show the use of binary circuits, fuzzy circuits, and quantum circuits for programming the behaviors of robots. Genetic algorithms are used to evolve behaviors, represented by square boxes in the diagram. The experiments were conducted on a wide variety of robots such as Braitenberg vehicles, Mr. PotatoHead and Schrödinger’s cat. Programming these robots with the logics described was an interesting application as it created new behaviors. 
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Figure 3.1: A diagram for the generalized Quantum Fuzzy model for humanoid robots
3.2. QUANTUM FUZZY BRAITENBERG VEHICLES 
Braitenberg Vehicles can now be even further extended to Quantum Fuzzy model, a new concept created in [xx] and later generalized in [ref]. This Quantum Fuzzy Model can be very useful because not only does it keep some properties of quantum circuits such as entanglement, but it also allows the input to be any real number between zero and one. 
Fig. 3.11 presents the abstracted schematic of mobile Quantum Braitenberg Vehicles and stationary puppet robot (Mister Potato Head) [Raghuvanshi07] which were described in chapter 2. We call it the “reactive architecture” as the robot reacts to the state of environment. All input signals from sensors are transformed to binary quantum initializations and all output signals come from (simulated) quantum measurement units and are also binary. The output signals may be probabilistic or entangled. Integer controls are created as vectors of binary signals. Some examples use quantum ternary logic. The internal “reasoning” of the robot controller is done in Hilbert space and is deterministic. It is the measurement process (with binary or ternary observables) that creates discrete output signals used to control servos and other robot effectors. Observe however that there is a possibility to have continuous signals from sensors and send continuous signals to effectors. Fuzzy logic would be thus more appropriate not only for reasoning of the robot but also for its sensing and control of effectors. Quantum and Fuzzy Logics can be also combined as two different logics cooperating in a single architecture. In the future, we hope to add quantum sensing to my quantum model of reasoning and learning for a humanoid. In fact, Quantum sensors already exist, and this would add a whole new dimension to our quantum robots.
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Fig. 3.13a presents a simple Quantum Braitenberg Vehicle where signals S1 and S2 come from the left and right light sensors, and signal N comes from noise sound sensor. M are measurements. As can be analyzed, this robot drives forward only if the signals from S1 and S2 are equal and turns deterministically left or right in other lightning conditions. When signals S1 and S2 are not the same and there is no sound the robot turns left and when there is sound the robot turns right. Change of direction is done by Fredkin gate controlled by sound sensor N. When there is no light from both sensors S1 and S2 the robot is not moving. This circuit can be easily modified to a more interesting behavior of the robot in fuzzy logic, shown in Fig. 13b. Now the robot smoothly combines rotation with forward motion depending on the difference of lightning in left and right sensors and on the level of noise from sensor N. The quantum fuzzy equivalent of this circuit is shown in Fig. 3.13a which is the same circuit for both binary and fuzzy quantum logic (the difference is in initialization and may be also in the measurement). In Fig. 3.13a representing Fuzzy Quantum Logic the information from sensors is now continuous in interval [0, 1] and the output information is probabilistic the same as before. By using however a model of “ensemble quantum computer” in which many standard quantum computers (circuits) work and measure information in parallel, the practically continuous control values for servos can be also created. The schematic remains the same as in Fig. 3. 13b.
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3.3. QUANTUM FUZZY MODEL WITH GENETIC ALGORITHMS TO SYNCHRONIZE TEXT AND SPEECH

We now use quantum logic and fuzzy logic to create realistic animations of behaviors and human-robot interactions. In previous sections we have presented the concept of a quantum controller designed as a behavior specification of a mobile robot. In this section we will combine these two approaches and introduce the concept of fuzzy quantum logic [Raghuvanshi08]. This approach was to create efficient Genetic Algorithm (GA) approach for robotic learning of theatric and interactive behaviors, particularly for the synchronization of speech and gestures of puppet robots. The class of problems to be solved was: how to use the Genetic Algorithm together with Quantum Fuzzy Model to synchronize the gestures and speech sounds of a humanoid robot representing particular emotions.

We created an efficient Genetic Algorithm for robotic learning to synchronize speech and visual expressions of a robot. Using Genetic Algorithms is a significant improvement, over today’s static mapping methods for lip-speech synchronization. Our experiment used an ESRA robot which includes a set of motors to control expressions and lip motions. By encoding lip shapes, using these encodings to create chromosomes, and applying Genetic Algorithms to evolve these chromosomes to match given text, my robot can develop lip motions that correspond with the spoken text. We experimented with various parameters of my algorithm to test how long it takes to synchronize text and lip motion for varying lengths, crossover rates, mutation rates, number of generations, number of offspring, and population size. We were surprised to find that robotic learning takes a relatively small number of evolutionary stages. With feedback from multiple sources, some of these stages can be further parallelized. Besides robots, this method can be applied to animation in movies. The presented method is beneficial because it is fast, language independent, and adapts to different speaking styles. This approach can be further extended by developing facial expressions, developing body movements, and synchronizing the two.

A genetic algorithm is a search technique used in computer science and engineering to find solutions to various search problems; decision or optimization. Genetic algorithms are a particular class of evolutionary algorithms that use techniques such as inheritance, mutation, selection, and crossover. Mutation involves changing the offspring in some way, selection is the selection of two parents, and crossover defines how the two parents are combined to give an offspring genome. A possible solution to a given problem can be encoded into a sequence of codes called a chromosome (or a genome). In our case, a chromosome is a pattern that corresponds to a behavior of fuzzy quantum circuit. In Genetic Algorithms, a set of random chromosomes are created to represent possible solutions to a given problem. The goal of the algorithm is to evolve the best solution (a chromosome) that matches the criteria. This can be done by formulating certain “fitness function” and “stopping criteria”. The GAs are often used in conjunction with fuzzy logic [Vadakkepat07] and recently also with binary and multi-valued quantum logic [Lukac02] to evolve circuits or behaviors. Figure 14 shows a basic flowchart of a genetic algorithm.
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Current methods create a sequence of these codes to represent how the lips should move when those words are spoken. This static mapping is dependent on the selected language. For a different language or dialect, the mapping will have to be different. In the simplest variant there are many phonemes for one servo motion, thus the mapping is many to one. However, a more sophisticated robot may have a one-to-one mapping. In addition, a robot that pronounces phonemes based on its emotional state the mapping becomes dependent on the robot’s emotion. Finally, as humans have always slight gesture and lip movement differences even remaining in the same emotional state, we add probabilistic selection of motions becoming one-to-many probabilistic mapping, depending on emotion, or even for the same emotional state. This is a good application of Fuzzy Quantum Logic.

There are many potential applications of the presented method. First, with a program using a genetic algorithm, matching lip movements to speech is language-independent. Also, one can use the same program for the voices of different people. In the traditional style, the tables would have to be recoded because everyone has individual accent, body language, and talking speed.  Our approach can be used to match text and lip motion for movie animation and for automatic behaviors of speech-related gestures of humanoid robots. Humanoid robots with proper lip motion would make a user friendly interactive experience without much man-power to develop their behaviors. This has many practical applications in business and toys. Animation industries don’t have to hand draw lip motion or use a databank of words. By using the proposed methodology and software that we developed, these industries can have actors say their lines and watch as computer-simulated characters develop the correct lip motion. This would be most effective if   a combination of pre-programmed lips-codes and user inputs were used. Concluding, the genetic algorithm can be used for automatic creation of many kinds of behaviors from large sets of examples:

1. For instance, the adaptation of this approach can be used to convert sounds into lip motion so that deaf people can understand what is being said in situations in which they can’t see the person who is speaking. 

2. It could also be used in reverse and convert lip motion into text. This could be useful in documenting presentations, speeches, and even court cases. 

3. It could also be used to create subtitles in movies, or trying to decode what is being said in an evidence tape without sound. 

4. Body language, such as hand, arm and eye movements, can be also developed in a similar way. 

5. Artistic designs (paintings, sculptures, installations, music, dialog), walking and gymnastic robots, and other will use these kinds of techniques. 
3.4. QUANTUM FUZZY MODEL TO MAP EMOTIONS
In existing literature, emotions have been mapped onto a two dimensional wheel of emotions [Plutchik08]. A new idea presented in this chapter is that instead of mapping emotions onto a two dimensional wheel, we can map them onto the Bloch sphere. Then we can simulate the application of quantum fuzzy literals. In the Quantum Fuzzy model, an output state before (quantum) measurement can represent the “internal emotions” of a robot while an output state after measurement can represent an emotion as perceived by an observer. Furthermore, entanglement can represent how interactions between two individuals (programmed agents) affect their emotions and the fuzziness of quantum fuzzy logic allows emotions to have different intensities. 

Our new system is defined by a particular choice of conjunction, disjunction and complementation operations. We show that NOT and Toffoli gates known from binary quantum circuits can be adapted as a set of universal gates to the limited fuzzy quantum system in which one meridian of the Bloch Sphere is mapped to the [0,1] interval of fuzzy sets [Raghuvanshi09]. In this new approach, the logic is expanded to arguments being arbitrary points on the Bloch Sphere, which is somewhat similar to complex fuzzy logic in which arguments are complex numbers [Dick05]. However, in contrast to standard fuzzy logic in which the arguments and results are in interval [0,1] or to complex fuzzy logic in which arguments and results are complex numbers, the new extended model has the arguments as quantum states and the results as quantum states, but in a Hilbert space of a higher dimension. Thus the closure property of algebras of logic is not satisfied in our new model. Please note, that when externally observed (measured), the new model reduces to the standard fuzzy set. But the internal observation, as seen from the point of view of the observer located in Hilbert space, creates states that are not directly observable. Based on the ideas presented above, the model presented by us is not a logic nor an algebra, but because it is related to fuzzy sets, logics and circuits, we call it a system with fuzzy properties realized in a quantum circuit or a quantum fuzzy circuit. The created quantum states can represent the state of reasoning or emotional state of a robot. This is illustrated in Figure 3.15. The well-known concept of “wheel of emotions” [Plutchik08] can be mapped to both complex field space and to Bloch Sphere. The second mapping proposed here gives additional possibilities to describe relations between emotions and emotion-modifying dynamics of quantum agents (qubits and groups of qubits). Observe that location of observables is basically arbitrary on the Bloch Sphere which is reflected in which states the measurement observables are placed and in which they are not. By adding more measurement observables to repeated identical states (as in ensemble computers) we get more information about the “hidden state” which however always remains not completely known to the external observer.

We will start with some example of different ways of modeling emotions using Bloch’s sphere. Fig. 3.15.A shows a simplified wheel of emotion that represents emotions along XY axes of a complex i/j plane. A combination of Active/Passive behavior with Positive/negative emotions provides a number of effective emotions characterized by psychology research [Plutchik08]. X axis represents active or passive mood. Y axis represents negative or positive emotions. If we traverse around the circumference of the circle, any point will have some combination of these, represented by the projection of the point along X and Y axis. However, as we are restricting the representation along the circumference of the circle only, and it is not an unconstrained plane, this limits the cases like ‘fully active and fully positive’, since this would be outside the circle.
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Fig. 3.15: Representing Simplified Wheel of Emotions using a complex plane and a Bloch’s Sphere. This domain can have also many other interpretations of points and (fuzzy quantum) single-qubit operations on them.

In Fig. 3.15B through Fig. 3.15C, we add the third dimension to this set of logic values as we represent this on the surface of the Bloch’s Sphere.  In Fig. 3.15B, the Wheel of Emotions from Fig. 3.15A becomes the horizontal XY plane of the sphere, and a new Z axis represents intensity. In Fig. 3.15C and Fig. 3.15D, the Wheel of Emotions stays in XZ plane, while Y represents the intensity.
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Fig. 3.16. Wheel of Emotions, from Plutchik [Plutchik08]

Fig. 3.17 provides a more comprehensive picture of the quantum sphere of emotions. This is an elaboration of the Figure 3.15A, applied to complete the “wheel of emotions” [Plutchik08] from Fig. 3.16.  Here the Z axis represents the intensity, and the emotions around a concentric circle now become phases of the quantum states.
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Fig. 3.17. Quantum Sphere of Emotions

The Quantum Sphere of Emotions significantly adds a lot to the Wheel of Emotions. While in the Wheel of Emotions, only one emotion can have a high intensity, the Quantum Sphere allows for existence of multiple emotions in the Hilbert space represented by the phases. After measurements, only one emotion will be observed. This is analogous to the human behavior where in the inside of human mind there are numbers of emotions, but the actions typically represent one emotion. 

The internal reasoning or dynamics of emotional state can be described now by a quantum circuit built from counterparts of standard fuzzy operators (NOT, AND corresponding to /\, OR corresponding to \/), Feynman Gate as fuzzy logic EXOR (additional operator defined in standard way based on \/, /\, and ¬ , fuzzy membership functions and other quantum operators serving as extensions. For instance, all kind of phase operators (Hadamard, V, V+, Pauli and other rotations). As an illustrative example let us discuss Figure 3.18a that presents the behavior of the prisoner. The prisoner is willing to talk when one cop is good and one cop is bad, otherwise his willingness level does not change. Observe that if the behavior of cops is entangled, the prisoner will never talk. This behavior can be made much more complicated when we put the behavior of cops and the prisoner on three Bloch Spheres and take the phase information as in Figure 3.15 into account and represent all emotions as in Fig. 3.17. Fig. 3.18b shows use of general-purpose controlled operators such as Controlled-V in Fig. 3.18b. The behavior of this circuit can be analyzed using methods from [Raghuvanshi07, Raghuvanshi08, Raghuvanshi09, Lukac08, Nielsen00]. Mood of Son is dependent on the activity level of the parents. It needs both Father and Mother to be active to swap completely the mood of Son (as V*V = NOT). If only Father or only Mother is active then Son is in Hilbert Space in state “half happy and half-not-happy” (1/(2)( |0( + |1() (called the “Cat state” in [Nielsen00]). So when the lowest qubit in Fig. 3.18b is measured then there is half probability that we observe Son as happy and half probability that we observe Son as unhappy (probability distribution is interpreted as a fuzzy set).  Single measurement does not tell us the emotional states of Mother, Father or Son. If we repeat measurement many times in separate copies of the circuit, as in ensemble computing, we would know with high probability if the son is happy, unhappy or in the “Cat state”. Knowing that the son is in the cat state would mean that one of parents is active, but we would be not able to find the state of Mother. Please note that these correlations of emotions specified by quantum states and operators are based on superposition and entanglements, and are described by different mathematics than the classical correlations.
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Fig. 3.18. Quantum circuits corresponding to emotional behaviors in two different situations. (a) behavior of Prisoner based on behavior of Cops, and (b) mood of Son based on his parents activity level.
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Fig 3.19. Changes of quantum states as complex rotation operators on the Bloch Sphere. (a) Negation, (b) rotations in the restricted case of only one meridian representing all logic values.
Using the known methods of quantum mechanics and quantum circuits [Nielsen00] to analyze our Quantum Fuzzy circuits, we can determine the effect of communication on the emotions of all agents representing parts of robot’s brain or people. In this way, the communication between the two agents is analogous to the entanglement in quantum circuits [Nielsen00]. Let’s look at one example between Frank and John using the Einstein-Podolsky-Rosen (EPR) Gate in Fig. 3. 20.
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Fig. 3.20. Analyzing behavior with a simple EPR circuit

Let us analyze the following inputs and outputs.
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After measurement, where 1 represents happy and 0 represents unhappy, the behavior is probabilistic. First, if both Frank and John are unhappy, there is one half probability that they will talk to each other and still be unhappy. There is one-half probability that they will talk to each other and realize they are not the only person who is unhappy, so they will both become happy. We can define similar situations for all crisp input combinations. Then, we can continue to analyze the behavior for fuzzy and entangled inputs. In general, this analysis becomes complicated with more than 4 qubits and a quantum simulator is used.

For the last example, we can represent the type of emotion as the phase, and the intensity of the emotion as a point from |0> to |1>. In other words, the wheel of emotions is represented as the central horizontal circle of the Bloch sphere.

However, in order to use this representation, we must be able to measure the phase of a state on  the Bloch sphere. We can do this by using Quantum tomography [Nielsen00].  One trivial example of quantum tomography is using the V (square-root of NOT) gate for approximate phase measurement. Applying the V gate transformation two times, after measurement we can distinguish between four points on the Bloch sphere. Shown in the calculations below, the V gate can be simplified to 
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Fig. 3. 21. Using V gate for Quantum Tomography
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3.5. GENERALIZING QUANTUM FUZZY MODEL

An important question to ask while generalizing a Quantum Fuzzy Model is, “as we can create a quantum realization of standard fuzzy logic [Raghuvanshi08], can we use these concepts to extend the notions and applications of fuzzy quantum circuits?”, and “what additional possibilities the fuzzy quantum circuit has over the standard fuzzy circuits?”

This new quantum fuzzy model uses conjunction, disjunction and complement (NOT) operations [Raghuvanshi09].  Complement is a basic one-argument operator. The truth function of negation has to be non-increasing (and assign 0 to 1 and vice versa); the function 1 − x (Łukasiewicz negation) is the best known candidate used in most logics. However, we apply the standard NOT operator used in quantum circuits, which is a projection (Pauli X rotation) on a Bloch Sphere. It operates then similar to fuzzy negation when the arguments are on one meridian of the Sphere with phase 0 [Raghuvanshi09], but it operates in a more general way when an arbitrary point on the Bloch’s sphere is its argument. Conjunction (t-norm, /\) is a two-argument operator. In Basic Fuzzy Propositional Logic, this is typically the ‘minimum’ operator, but we do not use minimum as t-norm. Similarly, Disjunction (t-conorm, s-norm, \/) is another two-argument operator, usually  ‘maximum’ operator, but we do not use maximum either as the s-norm. Operators \/, /\ and ¬ must satisfy the following De Morgan’s Laws.  

(1) 
¬ (A \/ B) = ¬A /\ ¬B, and 

(2)
 ¬ (A /\ B) = ¬A \/ ¬B. 

We wanted to satisfy these basic principles when we defined the operators in fuzzy quantum model  [Raghuvanshi09]. We will show below how to define these operators that will allow any points on the Bloch Sphere to be arguments of our operators. Other single-qubit and many-qubit quantum operators (represented by Unitary Matrices) can become additional operators of our extended fuzzy quantum model. Many new operators can be thus defined when we create extended fuzzy-like system using quantum circuits. The operators include the well-known single-qubit operators such as Hadamard Gate, Phase Gate, Square-Root-of-NOT and its Hermitian, Controlled-V (Controlled-Square-Root-of-NOT),  and many others.  The single-qubit operators can play the role of fuzzy membership functions but in addition they change phases of points on the Bloch’s Sphere (quantum states). The next question is “what is the use of these extended operators from the logic point of view?”, “what kind of logic domain is modeled by the surface of the Bloch Sphere and by Hilbert Space in general?”

We define the quantum fuzzy set using a meridian on Bloch Sphere,  with North Pole |0( representing 0 (false) and South Pole |1(  representing 1 (truth). Values along the meridian are taken to represent the [0, 1] interval of fuzzy logic, where pure quantum state (a point on surface of the sphere) (1/(2)( |0( + |1() represents fuzzy value ½ by its measurement.
In all these systems three gates are of main importance: Inverter, Conjunction and Disjunction. 
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Fig. 3.22. Mapping single-qubit quantum states from a meridian (or a full Sphere) to interval [0, 1] of standard fuzzy logic values.

NOT(A) or ¬A. Inverter is defined as rotation around X axis: Fuzzy Quantum Not (α|0( + β|1() =  β |0( + α |1( where the square of the (in general complex) value associated with ket |1( is the probability of obtaining a ‘1’ measurement. When repeated many times, the average is an equivalent of fuzzy value in interval [0, 1]. This is done in ensemble computing.

AND(A, B) or /\(A, B) or A∩B. Conjunction operator is defined in the same way as quantum AND, i.e. Toffoli gate with one qubit initialized to |0(. The definition of Fuzzy Quantum Conjunction Operator is thus the following: 
Fuzzy Quantum /\ (α1|0( + α2|1(, β1|0(  + β2|1( ) = Davio (α1|0( + α2|1(, β1|0(  + β2|1(, 0) = (α1|0( + α2|1() * (β1|0(  + β2|1() ( |0(. 

This is shown in Fig. 3.24 and derived below. Input is Kronecker Product of three parallel input qubits:

[image: image21.png]


  

Given this input, the output is calculated using the matrix of the Toffoli Gate.
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Fig.  3. 23. Calculations for quantum fuzzy conjunction operator.

The output therefore is : 
α1β1|000( + α1β2|010(  + α2β1|100( + α2β2|111( = (α1β1|00( + α1β2|01(  + α2β1|10() ( |0 ( + (α2β2|11() ( |1(            (equation 3.1)
This implies that the probability of measurement of ‘1’  is |α2β2|2 
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Fig. 3.24. Data for calculations for quantum fuzzy conjunction operator and its realization as a Toffoli gate where the Davio output R is measured. Qubits ( and ( are the arguments.

OR(A, B) or \/(A, B) or A U B. OR is defined in the same way as quantum disjunction, so it is defined by the circuit from Fig. 3. 25. 
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Fig. 3.25. Data for calculations for quantum fuzzy disjunction operator and its realization as a Toffoli gate where the Davio output R  is measured.

Now we can do similar calculations are before:
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Fig. 3.26. Calculations for quantum fuzzy disjunction operator.
The output therefore is : 
α2β2|001( + α2β1|011(  + α1β2|101( + α1β1|110( = (α2β2|00( + α2β1|01(  + α1β2|10() ( |1( + (α1β1|11() ( |0(              (equation 3.2)
This implies that the probability of measurement of ‘0’  is |α1β1|2  . Because |α1β1|2 + |α1β2|2  + |α2β1|2 + |α2β2|2  = 1 thus the probability of measuring  |1( is  |α1β2|2  + |α2β1|2 + |α2β2|2  as it should be to satisfy the fuzzy logic axioms. The internal quantum states do not satisfy the rules of fuzzy logic. For instance, even commutativity does not hold. The internal states include much more information than their measured states but this information is not easily accessible and is usually entangled. These facts, however, give quite new interpretation possibilities of circuits’ behaviors as reasoning, perceptions, emotions or motions.

Based on the well-known quantum realization of Toffoli gate [Nielsen00], only five controlled gates (two Controlled-V, one Controlled-V+ and two Feynman gates) are necessary to calculate not only the fuzzy quantum operator /\ (AND) but also other 2-variable operators using only technology-realizable two-qubit primitives [Lukac02]. We have also shown that fuzzy quantum operator \/ can be designed with only five two-qubit primitives (and no inverters). Gates such as Controlled-Hadamard, Controlled-V, Controlled-V+ are also used as additional one-argument operators, in which one input is initialized to a constant ( [0, 1]. This way many quantum operators such as ¬A/\B, A ( B, etc can be created using definitions of the basic operators defined in our new model. Classical binary gates of quantum logic such as Fredkin, Miller and Feynman can be also used in the proposed extended fuzzy quantum systems. 
Let us look at how ‘fuzziness’ is created by an ensemble quantum computer (Fig. 3.27). If PQ together represent the Fuzzy output, then probability of PQ being 0 is 25%, probability of PQ being 0.5 is 50%, and probability of PQ being 1 is 25%. This corresponds to fuzzy logic with degrees of membership corresponding to these probabilities. Scaling it to 2,4,8,16 processors of the ensemble quantum computer gets it more closer to continuous fuzzy logic, but individual internal states still show entanglement and constrained behaviors. If we go to infinity with the number of processors in the ensemble quantum computer, we get a continuous fuzzy set with very fine granularity. Increasing the number of processors is possible as processors in NMR for instance are just molecules. Now such computers must be cooled so they are large but recent research efforts speculate about designing room temperature quantum computers and even claim that quantum computing exists in nature and that some “algae and bacteria may have been performing quantum calculations at life-friendly temperatures for billions of years” [QuantumBiology]. It is amazing that such complexity exists in life, and this shows us that there is a lot that we can learn from nature. 
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Fig. 3.27. Illustration of interpreting Fuzziness in an ensemble computer with two processors.

It is the entanglement that makes the Fuzzy Quantum circuits different from circuits that model various types of logic. Let us discuss measurement in Fig. 3.25. When it happens that the measurement in qubit R gives the result 1 then the qubits ( and ( also collapse to value 1 (this results directly from Equation 3.1). These values are used in next calculations of other functions that involve qubits ( and (. This is a phenomenon that does not occur in standard fuzzy sets: the result of measurement (observation) affects the state of the argument. It is like if people are voting for a US President and if happens that Mr. R is selected then all who may or may not have voted for him change their opinion as the result of the election outcome to become supporters of Mr. R. If however the measurement in qubit R happens to be a 0, then qubits ( and ( do not collapse to fixed values but remain in (non-maximum) entanglement state (α1β1|00( + α1β2|01(  + α2β1|10(). This entangled state may be an argument input given to other gates (and measurements) in other quantum agents  processing  the data qubits ( and (.

Let us assume now that qubit ( is |1(. Assume also that the argument qubit ( is in the “Cat State” (i.e. the half-dead half-alive state of Schrödinger cat) (1/(2)( |0( + |1(). Then if we measure only qubit R, the qubits collapse to states |100( or |111( (order from top), which means that qubit ( is always the same as the decision qubit R. This circuit emulates therefore the Einstein-Podolsky-Rosen experiment in which qubits (, ( and R are maximally entangled. We can say that because person ( votes absolutely “yes”, he gives the qubit ( the opportunity to collapse always to the same decision state as the decision qubit R. This is only more simple example of the dynamics of several quantum agents simulating states, decisions, emotions and reasoning.

Fig. 3.28 concludes this part of research in its analysis of human and robotic behaviors and how they map to Quantum fuzzy circuits. 

	Element
	Modeled by

	Emotional  States – One or more emotions
	Qubits

	Collection of emotions or emotional agents
	Multiple Qubits

	Multiple Individuals
	Multiple Qubits

	Relationships
	Quantum Circuits

	Internal Emotions – Multiple conflicting  fast changing emotions may be present at the same time
	Internal  Quantum states BEFORE measurement

	Observed behavior – governed by predominant emotions
	States AFTER measurement

	Instant behaviors – More randomness and unpredictability
	Small number of measurements

	Personalities – Long term behaviors, less randomness
	Large number of measurements

	Telepathic connections – Once connected individuals, now separated, can have dependent  behaviors
	Quantum Entanglement


Fig. 3. 28. Elements of Human Behavior and the new model introduced in the presented work. 
	
	Boolean Logic
	Fuzzy Logic
	Quantum Fuzzy Circuit model

	What is the input state?
	{0,1}
	Any real number between 0 and 1
	Any point on the Bloch Sphere

	What is the output state?
	{0,1}
	Any real number between 0 and 1
	1. Measured output is a pair of fuzzy value and probability
2. The state is in multi-dimensional Hilbert Space

	Number of processors
	One
	One
	Ensemble 

	Measurement
	1-1 Deterministic
	1-1 Deterministic
	Probabilistic

	Number and type of measurement apparatuses
	1
	1
	Any number and type of measurements

	Entanglement
	No
	No
	Yes

	Internal state
	No 
	No
	Yes


Fig. 3.29. Describes how the Quantum Fuzzy Circuit model is different than other logic systems. 

The fuzzy quantum circuits introduced in [Raghuvanshi09] and extended and explained here further are based on extended fuzzy concepts and do not satisfy internally some axioms of any algebra of fuzzy logic. The logic of their operation is neither fuzzy logic [Trillas01] nor quantum logic [Birkchoff36]. This model is useful to simulate new types of behaviors of fuzzy quantum circuits that are not possible with either standard fuzzy logic or with complex fuzzy logic. Especially the concepts of entanglement and partial measurement are new to modeling fuzzy systems. Fig. 3.29 discusses these aspects in more detail. The new model was used by me to evolve behaviors of humanoid robots with a genetic algorithm [Raghuvanshi08]. 
We plan to further investigate the mathematical properties of the fuzzy quantum systems. We plan also to compare them to various types of complex fuzzy logic [Dick05] and quantum logic [Pykacz99, Titani03]. The entangled versus non-entangled robot behaviors with fuzzy and quantum fuzzy evolved controllers can be also compared and analyzed in our future work. Another research opportunity is that the controller is a quantum (in particular reversible) circuit, so it can be not only evolved but also synthesized from examples as an incompletely specified function or as a state machine [Kumar08, Lukac08] using inductive learning. These methods are similar to group theory decompositions that we applied already to Rubik’s cube and other permutation games [Raghuvanshi09A], and we hope that our software can be adapted for these tasks.
3.6. Conclusion
This research created several realistic humanoid robots. The methodology of research was the following: (1) learning from papers, books, and the internet about various new concepts related to quantum-ness, emotions and intelligence, (2) programming some of these concepts, (3) modeling them on my robots and analyzing resulting robot behaviors, (4) trying to find some theoretical unifying principles for the methods presented by other authors,  through   experiments with robots and through software written and tested.

This chapter will be extended to find several practical applications in the entertainment and animation industry. The models developed here are also valuable tools for learning and teaching in high schools. Using robots to teach quantum logic to teens is a new idea which will be further expanded [ref papers from Israel]. An entirely new concept of modeling Fuzzy logic with Quantum Circuits was created, modified, improved and tested on robots. Currently, this model is applicable to mapping emotions and generating realistic behaviors. Especially the concepts of entanglement and partial measurement are new to fuzzy logic. This new logic to evolve behaviors of humanoid robots with a genetic algorithm [Raghuvanshi08], will be applied to concrete quantum fuzzy circuits for more   more applications in future.
It is well known that fuzzy logic has important applications in robotics, image processing, decision making and industrial automation, and other [Vadakkepat07]. Fuzzy quantum circuits can be even more useful. First, we can observe that, realizing fuzzy logic in quantum would be valuable as one would be able to integrate large fuzzy quantum circuits into quantum computers, because of the predicted low power consumption and high processing power of such computers. Next, they could be integrated into generalized quantum algorithms such as Grover. For instance, an example continuous version of Grover was presented in [Ermakov02]. The concepts of continuous variables in quantum information are presented in [Braunstein05]. Applications in Quantum Neural Nets are discussed in [Purushothaman97]. Therefore generalizations will be created for fuzzy quantum circuits realizing standard fuzzy logic, as such circuits realize just a variant of continuous quantum logic.
Other applications of this new approach include creating a more efficient way of mapping speech to lip motions and creating or displaying human-like emotions on a humanoid robot. Furthermore, robotics can be used to teach young kids about complex ideas such as Quantum circuits, computing and logic. 
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Figure 3. 13. (a) schematic for binary quantum circuit and fuzzy quantum circuit, (b) schematic for fuzzy circuit controller.
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Figure 3.12. Schematics of  “Emotional Interactive Theatre”, which combines all above defined robot architectures. 











Figure 3.14. Basic GA flowchart





Figure 3.11. The schematic diagram of Quantum Braitenberg Vehicles and similar robots in which the behavior emerges from combination of sensors, effectors and quantum logic circuit serving as a controller.
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